Surname
Other Names

Centre Number

Candidate Number
0

GCSE

3430UE0-1
||| || |||
S19-3430UE0-1

SCIENCE (Double Award)

Unit 5 - CHEMISTRY 2
 HIGHER TIER

THURSDAY, 16 MAY 2019 - MORNING
1 hour 15 minutes

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	15	
2.	7	
3.	6	
4.	15	
5.	11	
6.	6	
Total	60	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.
The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.
Answer all questions.

| 1. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Crude oil can be separated into simpler mixtures, called fractions, which contain hydrocarbo |
| compounds with boiling points in a similar range. |
| (a) The table lists the properties of some fractions obtained from crude oil. |
| Fraction Number of
 carbon atoms
 in fraction Boiling point
 range $\left({ }^{\circ} \mathrm{C}\right)$ Colour of
 fraction Flame when
 burning Ease of
 burning
 fuel oil $1-4$ -170 to 20 colourless clean very easy
 petrol $5-10$ 20 to 70 pale yellow clean easy
 naphtha $8-12$ 70 to 120 yellow some soot quite easy
 kerosene $10-16$ 120 to 240 dark yellow smoky quite difficult
 diesel oil $15-30$ 240 to 350 brown smoky difficult |$>.$

Use the information in the table to describe how the burning of the fractions depends upon the size of the molecules.
(b) The boiling points of hydrocarbons containing 1 to 12 carbon atoms are shown in the table below. The boiling point for the hydrocarbon with 7 carbon atoms is missing.

Number of carbon atoms	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
1	-165
2	-90
3	-40
4	10
5	35
6	70
7	
8	125
9	150
10	175
11	195
12	215

(i) Complete the bar chart below. Some of the bars have already been drawn.

(ii) Use a ruler to draw a trend line on the chart and use this to estimate the boiling point of the hydrocarbon with 7 carbon atoms.
Boiling point \qquad ${ }^{\circ} \mathrm{C}$
(c) Many of the fractions obtained from crude oil are used as fuels.
(i) The fire triangle shows the factors necessary to start and maintain a fire.

State one method that could be used to safely put out a small amount of spilled petrol burning on the floor. Give the reason why your chosen method would work.

Method
Reason
(ii) One of the hydrocarbons in petrol is pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$.

Complete and balance the symbol equation for the complete combustion of pentane.

(iii) Hydrogen fuel cells are now used in many cars instead of petrol. The overall change inside a hydrogen fuel cell is the same as when hydrogen burns.

Explain why using hydrogen fuel cells in cars is better for the environment than petrol.
（d）It is possible to compare the energy released when different fuels are burned using the following apparatus．

To calculate the energy released per gram of fuel burned，the following equation is used．
$\begin{gathered}\text { energy released } \\ \text { per gram of fuel }(\mathrm{J} / \mathrm{g})\end{gathered}=\frac{\text { mass of water } \times 4.2 \times \text { temperature rise }\left({ }^{\circ} \mathrm{C}\right)}{\text { mass of fuel used }(\mathrm{g})}$
（i）Apart from measuring the mass of water，describe all the measurements that would need to be taken to be able to calculate the energy released per gram of fuel burned．
（ii）When comparing the energy released from different fuels， 100 g of water should be used each time．State one other variable that should be controlled．
(iii) Tick (\checkmark) the energy profile diagram that represents the combustion of fuels.

\square

\square

\square
Reaction progress

Reaction progress

Examiner only
\square

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2. (a) Magnesium reacts with oxygen to form magnesium oxide.

Using the electronic structures below, draw dot and cross diagrams to show how bonding takes place during the formation of magnesium oxide. Include the electronic structures of the ions formed.

$$
\text { magnesium }=2,8,2 \quad \text { oxygen }=2,6
$$

(b) The melting points of magnesium oxide and sodium chloride are given below.

Substance	Melting point $\left({ }^{\circ} \mathrm{C}\right)$
sodium chloride	801
magnesium oxide	2852

Explain why there is a difference in their melting points even though they are both ionic substances.
\qquad
\qquad
\qquad
\qquad
(c) Using the electronic structures below, draw a dot and cross diagram to show the bonding in a molecule of carbon dioxide, CO_{2}.

$$
\text { carbon }=2,4 \quad \text { oxygen }=2,6
$$

3. When two different metals are connected in a cell, the metal with the higher reactivity transfers its electrons to the other metal.

The potential difference produced between pairs of metals can be used to place them in order of reactivity. The bigger the potential difference, the bigger the difference in reactivity.
(a) The following apparatus was used to investigate the reactivity of four different metals, A, B, C and D, compared with copper.

Each metal was placed separately into a cell with a copper strip. The potential difference was recorded for each metal and the results are shown below.

Metal	Potential difference (V)	Direction of electron flow
\mathbf{A}	0.3	copper \rightarrow metal \mathbf{A}
\mathbf{B}	0.6	metal $\mathbf{B} \rightarrow$ copper
\mathbf{C}	1.1	metal $\mathbf{C} \rightarrow$ copper
\mathbf{D}	0.8	copper \rightarrow metal \mathbf{D}

Use the information to place metals $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in order of their reactivity in relation to copper.

1.
2.
3. copper
4.
5. \qquad
(b) The reactivity of four other metals, $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z}, was also investigated using the same apparatus. Some of the results are shown in the following table.

Pair of metals in the cell	Potential difference (V)	Direction of electron flow
\mathbf{W} and \mathbf{X}	1.2	$\mathbf{W} \rightarrow \mathbf{X}$
\mathbf{W} and \mathbf{Y}	0.9	$\mathbf{Y} \rightarrow \mathbf{W}$
\mathbf{W} and \mathbf{Z}	0.8	
\mathbf{Y} and \mathbf{Z}		$\mathbf{Y} \rightarrow \mathbf{Z}$

The order of reactivity of these four metals is as follows.

Use this information to give
(i) the direction of the electron flow when \mathbf{W} and \mathbf{Z} are placed in the cell,
(ii) the potential difference for the cell with metals \mathbf{Y} and \mathbf{Z}.
\qquad V
(c) When copper and zinc are placed into the cell, the following reaction takes place.

$$
\mathrm{Cu}^{2+}+\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}
$$

Explain how this reaction shows both oxidation and reduction.
4. In a class experiment, Dylan and Joel were given a solution of sodium carbonate containing 5.23 g of sodium carbonate powder dissolved in $500 \mathrm{~cm}^{3}$ of water.

The relative formula mass $\left(M_{\mathrm{r}}\right)$ of sodium carbonate is 106 .
(a) Use this information to calculate the number of moles of sodium carbonate in the 5.23 g of the powder. Give your answer correct to two decimal places.

Number of moles = mol
(b) Dylan and Joel were asked to use the sodium carbonate solution to prepare a sample of sodium sulfate crystals in a three-stage process.

In the first stage of their preparation, they used the following apparatus to carry out a titration.

The equation for the reaction taking place is as follows.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

(i) A trial run was carried out and the titration repeated three times. The volume of acid added each time was recorded.

	Trial	1	2	3
Volume of sulfuric acid added $\left(\mathrm{cm}^{3}\right)$	30.20	27.55	27.75	27.65

I. State the purpose of carrying out a trial run.
II. State whether the sulfuric acid or the sodium carbonate solution is the more concentrated. Give the reason for your answer.
\qquad
\qquad
(ii) Use all of the information provided to describe in detail the other two stages Dylan and Joel carried out to obtain pure sodium sulfate crystals.
(c) Sodium sulfate solution is also formed when sodium hydroxide solution reacts with copper(II) sulfate solution.
(i) Give the balanced symbol equation for this reaction.
(ii) Describe tests that can be carried out to identify both of the ions in sodium sulfate solution. Give the expected observation for both tests.
\qquad
\qquad
\qquad
\qquad
(d) The reaction occurring between solutions of sodium carbonate and magnesium sulfate forms a precipitate of magnesium carbonate.

Write the ionic equation for the formation of magnesium carbonate.
(I) Give the balanced symbol equalion for this reaction.
\qquad
me
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

5. In 1985, a new allotrope of carbon was discovered and named buckminsterfullerene. This allotrope consists of sixty carbon atoms joined together to resemble a shape similar to that of a football (Figure 1), only ten septillion ($10,000,000,000,000,000,000,000,000$) times smaller.

This form of carbon was named after the architect Buckminster Fuller, famous for designing geodesic domes, as shown in Figure 2.

Figure 1

Figure 2

The structure of buckminsterfullerene is a truncated icosahedron, consisting of 20 hexagons and 12 pentagons that intersperse to form a spherical structure. Within the structure, each carbon atom is bonded to three other carbon atoms and no pentagon has a joining edge with another pentagon.

Other spherical allotropes of carbon, called fullerenes, have since been made. These include balls consisting of seventy, seventy-six and eighty-four carbon atoms. Together, they have become known as 'Buckyballs'.

Fullerenes have high melting points and boiling points. They also have a high density and a large surface area for their size.

Today, fullerenes are at the heart of nanotechnology - the study of atomic scale structures and devices. This provides many exciting new research possibilities for scientists including their potential uses in catalysts, lubricants and in nano-tubes for strengthening materials and as a way of delivering drugs into the body.

Nano-tubes are fullerenes that are used to reinforce graphite in tennis rackets because they are very strong. They are also used as semiconductors in electrical circuits.

The nano-tube's structure also allows it to be used as a container for transporting a drug in the body. A molecule of the drug can be placed inside the nano-tube cage. This keeps the drug 'wrapped up' until it reaches the site where it is needed. In this way, a dose that might be damaging to other parts of the body can be delivered safely to, for example, a tumour.
(a) Tick (\checkmark) all the statements that correctly describe buckminsterfullerene.
its structure has 32 faces
it has a relative molecular mass of 60
\square

it is an allotrope of carbon
it has a giant ionic structure

it is a hydrocarbon compound

it is a smart material \square
it is 1×10^{25} times smaller than a football \square
(b) (i) Use the following formula to calculate the number of edges that a molecule of buckminsterfullerene has.
number of edges $=\frac{\text { total number of sides of all pentagons and hexagons }}{2}$

Number of edges $=$ \qquad

$$
\begin{gathered}
\text { volume }=\frac{4}{3} \pi r^{3} \\
\pi=3.14 \quad r=\text { radius } \\
1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}
\end{gathered}
$$

(c) Give the main reason why the structure of fullerenes has resulted in there being an interest in developing their use as catalysts.
(d) State why some people might oppose the use of fullerenes in drug delivery systems in the body.
\qquad
\qquad
(e) One student said that Buckyballs should be good electrical conductors but her friend disagreed.

Use your knowledge of bonding and structure to give one reason that each student could use to support their argument.
\qquad
\qquad
\qquad
\qquad
6. Discuss what is meant by isomerism in alkanes and alkenes using compounds with the molecular formulae $\mathrm{C}_{4} \mathrm{H}_{10}$ and $\mathrm{C}_{4} \mathrm{H}_{8}$ to illustrate your answer.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	$\boldsymbol{f}_{\substack{\text { Examiner } \\ \text { only }}}$

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

FORMULAE FOR SOME COMMON IONS			
POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al^{3+}	bromide	Br^{-}
ammonium	$\mathrm{NH}_{4}{ }^{+}$	carbonate	$\mathrm{CO}_{3}{ }^{\text {- }}$
barium	Ba^{2+}	chloride	Cl^{-}
calcium	Ca^{2+}	fluoride	F^{-}
copper(II)	Cu^{2+}	hydroxide	OH^{-}
hydrogen	H^{+}	iodide	I^{-}
iron(II)	Fe^{2+}	nitrate	NO_{3}
iron(III)	Fe^{3+}	oxide	O^{2-}
lithium	Li^{+}	sulfate	$\mathrm{SO}_{4}{ }^{\text {- }}$
magnesium	Mg ${ }^{2+}$		
nickel	Ni^{2+}		
potassium	K^{+}		
silver	Ag^{+}		
sodium	Na^{+}		
zinc	Zn^{2+}		

THE PERIODIC TABLE																	
		$\stackrel{1}{\mathrm{H}}$ Hydrogen 1															$\begin{gathered} 4 \\ \mathrm{He} \\ \text { Helium } \\ 2 \end{gathered}$
$\begin{gathered} 7 \\ \mathrm{Li}^{\mathbf{L i t h i u m}} \\ 3 \end{gathered}$												$\begin{gathered} \hline 11 \\ \text { B } \\ \text { Boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { Carbon } \\ 6 \\ \hline \end{gathered}$			$\begin{array}{\|c} \hline 19 \\ \text { Fluorine } \\ 9 \end{array}$	20 Ne Neon 10
													$\begin{gathered} 28 \\ \text { Silicon } \\ 14 \end{gathered}$		$\begin{gathered} 32 \\ S \\ \text { Sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { Cl } \\ \text { Chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Ar} \\ \text { Argon } \\ 18 \end{gathered}$
$\begin{gathered} 39 \\ \substack{\text { Potassium } \\ 19} \end{gathered}$	40 Ca Calcium 20						56 Fe Iron 26 10	$\begin{aligned} & 59 \\ & \text { Co } \end{aligned}$ Cobalt 27		63.5 Cu 29 Copper	$\begin{gathered} 65 \\ \mathrm{Zn} \\ \mathrm{Zinc} \\ 30 \end{gathered}$				79 Se Selenium 34	$\begin{array}{\|c\|} \hline 80 \\ \mathrm{Br} \\ \text { Bromine } \\ 35 \end{array}$	
		$\begin{gathered} 89 \\ \mathrm{Y} \\ \text { Ytrium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ Z r \\ \text { Zirconium } \\ 40 \end{gathered}$			$\begin{gathered} 99 \\ \mathrm{Tc} \\ \text { Technetium } \\ 43 \end{gathered}$				108 Ag Silver 47		$\begin{gathered} 115 \\ \text { In } \\ \text { Indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { Tin } \\ & 50 \end{aligned}$	$\begin{gathered} 122 \\ \text { Antimony } \\ 51 \end{gathered}$		$\begin{gathered} 127 \\ \text { l } \\ \text { lodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \text { Xe } \\ \text { Xenon } \\ 54 \end{gathered}$
	$\begin{gathered} 137 \\ \text { Ba } \\ \text { Barium } \\ 56 \end{gathered}$		$\begin{gathered} 179 \\ \text { Hf } \\ \text { Hafnium } \\ 72 \end{gathered}$		$\begin{array}{\|c\|} \hline 184 \\ \text { W } \\ \text { Tungsten } \\ 74 \end{array}$			$\begin{array}{\|c\|} \hline 192 \\ \mathrm{Ir} \\ \text { Iridium } \\ 77 \\ \hline \end{array}$	$\begin{gathered} 195 \\ \mathrm{Pt} \\ \text { Platinum } \\ 78 \end{gathered}$	$\begin{aligned} & 197 \\ & \mathrm{Au} \\ & \text { Gold } \\ & 79 \end{aligned}$			$\begin{gathered} 207 \\ \mathrm{~Pb} \\ \text { Lead } \\ 82 \end{gathered}$				$\begin{gathered} 222 \\ \text { Rn } \\ \text { Radon } \\ 86 \end{gathered}$
$\begin{gathered} 223 \\ \text { Fr } \\ \text { Francium } \\ 87 \end{gathered}$	$\begin{gathered} 226 \\ \text { Ra } \\ \text { Radium } \\ 88 \end{gathered}$		Key														
						$\begin{gathered} A_{r} \\ \text { Symbo } \\ \text { Name } \\ Z \\ \hline \end{gathered}$		atomic number									

